Siglo XXI. Diario digital independiente, plural y abierto. Noticias y opinión
Viajes y Lugares Tienda Siglo XXI Grupo Siglo XXI
21º ANIVERSARIO
Fundado en noviembre de 2003
Ciencia
Etiquetas | Investigación | Células | respuestas | CNIC
Esta información puede conducir a reinterpretaciones de procesos patológicos como la aterosclerosis, la progresión de los tumores o las enfermedades neurodegenerativas

Descubren que las células tienen dos mecanismos distintos para responder a diferentes rangos de fuerzas

|

A1 3530843 1


Una investigación realizada en el Centro Nacional de Investigaciones Cardiovasculares (CNIC) desvela que las células tienen dos mecanismos distintos para responder a diferentes rangos de fuerzas, mediados por diminutos hoyuelos en su superficie (llamados 'caveolas') o grandes depresiones, las 'dolinas'.


El estudio, impulsado por la Fundación “la Caixa” y publicado en la revista ‘Nature Cell Biology,’ aclara el papel de las 'caveolas', que “resulta esencial en tejidos que están sometidos a grandes fuerzas mecánicas (como músculo, corazón, vasos y adiposo), mientras que el de las 'dolinas' sería relevante para responder a fuerzas bajas o medias”, como explicó Miguel Ángel del Pozo, coordinador de la investigación y jefe de grupo de Mecanoadaptación y Biología de Caveolas del CNIC.


Según los expertos, esta información puede conducir a reinterpretaciones de procesos patológicos como la aterosclerosis, la progresión de los tumores o las enfermedades neurodegenerativas. Las células, explican los investigadores, están constantemente sometidas a fuerzas mecánicas de diferente tipo e intensidad procedentes de su microambiente, como el flujo sanguíneo, las contracciones o estiramientos musculares. Para responder y adaptar su funcionamiento a estos estímulos, la evolución las ha dotado de elementos y mecanismos capaces de “sentir” o detectar diferentes formas de fuerzas.


Entre todas las estructuras celulares con esta capacidad, las mejor conocidas, según el doctor Miguel Ángel del Pozo, son las 'caveolas', o ‘pequeñas cuevas’ en latín. “Son diminutas invaginaciones de la membrana plasmática (la envuelta externa de las células), presentes en muchos tipos celulares, que detectan estímulos mecánicos al modificar su geometría: se aplanan cuando las células se hinchan o se someten a un estiramiento (algo semejante a lo que ocurre con las arrugas en un vestido); y se vuelven a formar y agrupar cuando la membrana celular está relajada”.


Estos cambios a su vez, como explicó el doctor Del Pozo, “modulan redes de señales bioquímicas en la célula de tal forma que las 'caveolas', no sólo son adaptadores mecánicos, sino también transductores de información mecánica”.


Por tanto, destacó Fidel-Nicolás Lolo, coordinador de la investigación junto al doctor del Pozo, “son capaces de ‘leer’ la física y traducirla en química celular, permitiendo que las células adapten adecuadamente su funcionamiento a las demandas ambientales”.


Para tratar de comprender mejor esta cuestión, los investigadores del CNIC colaboraron con el biofísico de la Universidad de Barcelona-IBEC, Pere Roca-Cusachs. Mediante el uso de la técnica de pinzas magnéticas, trataron de "dilucidar qué elemento es el sensor mecánico y cuál el transductor de la señal”, como explicó Miguel Ángel del Pozo.


Por otro lado, el doctor Lolo señaló que “las dolinas podrían ser especialmente importantes en células que no tienen 'caveolas' (como linfocitos o neuronas), pero que sí expresan ciertos niveles de caveolina-1, de forma que su fisiología estaría adaptada a responder a fuerzas más sutiles propias del microambiente en el que viven estos tipos celulares”.

Descubren que las células tienen dos mecanismos distintos para responder a diferentes rangos de fuerzas

Esta información puede conducir a reinterpretaciones de procesos patológicos como la aterosclerosis, la progresión de los tumores o las enfermedades neurodegenerativas
Redacción
lunes, 2 de enero de 2023, 12:55 h (CET)

A1 3530843 1


Una investigación realizada en el Centro Nacional de Investigaciones Cardiovasculares (CNIC) desvela que las células tienen dos mecanismos distintos para responder a diferentes rangos de fuerzas, mediados por diminutos hoyuelos en su superficie (llamados 'caveolas') o grandes depresiones, las 'dolinas'.


El estudio, impulsado por la Fundación “la Caixa” y publicado en la revista ‘Nature Cell Biology,’ aclara el papel de las 'caveolas', que “resulta esencial en tejidos que están sometidos a grandes fuerzas mecánicas (como músculo, corazón, vasos y adiposo), mientras que el de las 'dolinas' sería relevante para responder a fuerzas bajas o medias”, como explicó Miguel Ángel del Pozo, coordinador de la investigación y jefe de grupo de Mecanoadaptación y Biología de Caveolas del CNIC.


Según los expertos, esta información puede conducir a reinterpretaciones de procesos patológicos como la aterosclerosis, la progresión de los tumores o las enfermedades neurodegenerativas. Las células, explican los investigadores, están constantemente sometidas a fuerzas mecánicas de diferente tipo e intensidad procedentes de su microambiente, como el flujo sanguíneo, las contracciones o estiramientos musculares. Para responder y adaptar su funcionamiento a estos estímulos, la evolución las ha dotado de elementos y mecanismos capaces de “sentir” o detectar diferentes formas de fuerzas.


Entre todas las estructuras celulares con esta capacidad, las mejor conocidas, según el doctor Miguel Ángel del Pozo, son las 'caveolas', o ‘pequeñas cuevas’ en latín. “Son diminutas invaginaciones de la membrana plasmática (la envuelta externa de las células), presentes en muchos tipos celulares, que detectan estímulos mecánicos al modificar su geometría: se aplanan cuando las células se hinchan o se someten a un estiramiento (algo semejante a lo que ocurre con las arrugas en un vestido); y se vuelven a formar y agrupar cuando la membrana celular está relajada”.


Estos cambios a su vez, como explicó el doctor Del Pozo, “modulan redes de señales bioquímicas en la célula de tal forma que las 'caveolas', no sólo son adaptadores mecánicos, sino también transductores de información mecánica”.


Por tanto, destacó Fidel-Nicolás Lolo, coordinador de la investigación junto al doctor del Pozo, “son capaces de ‘leer’ la física y traducirla en química celular, permitiendo que las células adapten adecuadamente su funcionamiento a las demandas ambientales”.


Para tratar de comprender mejor esta cuestión, los investigadores del CNIC colaboraron con el biofísico de la Universidad de Barcelona-IBEC, Pere Roca-Cusachs. Mediante el uso de la técnica de pinzas magnéticas, trataron de "dilucidar qué elemento es el sensor mecánico y cuál el transductor de la señal”, como explicó Miguel Ángel del Pozo.


Por otro lado, el doctor Lolo señaló que “las dolinas podrían ser especialmente importantes en células que no tienen 'caveolas' (como linfocitos o neuronas), pero que sí expresan ciertos niveles de caveolina-1, de forma que su fisiología estaría adaptada a responder a fuerzas más sutiles propias del microambiente en el que viven estos tipos celulares”.

Noticias relacionadas

El Global Shading Day, celebrado el pasado 21 de marzo, es de crucial importancia para recordarnos la necesidad de la instalación de protección solar como paso directo para combatir el cambio climático y crear edificios más sostenibles. Esta sencilla medida evita el sobrecalentamiento de los edificios, reduce las necesidades de aire acondicionado y reduce las emisiones de dióxido de carbono (CO2).

El Proyecto ‘Libera’, de la Sociedad Española de Ornitología (SEO)/BirdLife y Ecoembes, caracterizó más de 77.000 residuos abandonados en ríos, lagos y embalses de España, en la séptima edición de su campaña de ciencia ciudadana ‘1m2 por los ríos, lagos y embalses’. Del 9 al 24 de marzo tuvo lugar esta edición, en la que participaron casi 7.000 personas en la recogida y caracterización de basuraleza en los entornos fluviales.

Los investigadores Cristina Linares Gil y Julio Díaz Jiménez, del Instituto de Salud Carlos III (ISCIII), serán los coordinadores científicos del nuevo Observatorio de Salud y Cambio Climático (OSCC) y codirectores de la Unidad de Cambio Climático, Salud y Medio Ambiente Urbano en la Escuela Nacional de Sanidad (ENS) del Instituto.

 
Quiénes somos  |   Sobre nosotros  |   Contacto  |   Aviso legal  |   Suscríbete a nuestra RSS Síguenos en Linkedin Síguenos en Facebook Síguenos en Twitter   |  
© Diario Siglo XXI. Periódico digital independiente, plural y abierto | Director: Guillermo Peris Peris
© Diario Siglo XXI. Periódico digital independiente, plural y abierto